Two broad scenarios for extended linear Lorentz transformations (ELTs) are modeled in Section 2 for mixing subluminal and superluminal sectors resulting in standard or deformed energy-momentum dispersions. The first scenario is elucidated in the context of four diverse realizations of a continuous function <svg style="vertical-align:-3.56265pt;width:30.1625px;" id="M1" height="16.6625" version="1.1" viewBox="0 0 30.1625 16.6625" width="30.1625" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><path id="x1D453" d="M619 670q0 -13 -9 -26t-18 -19q-13 -10 -25 2q-36 38 -66 38q-31 0 -54.5 -50t-45.5 -185h120l-20 -31l-107 -12q-23 -138 -57 -293q-27 -122 -55 -184.5t-75 -109.5q-60 -61 -114 -61q-25 0 -47.5 15t-22.5 31q0 17 31 44q11 8 20 -1q10 -11 31 -19t35 -8q26 0 47 19
q34 34 71 253l54 315h-90l-3 12l31 30h70q28 138 90 204q35 37 75 57.5t70 20.5q26 0 45 -14t19 -28z" /></g><g transform="matrix(.017,-0,0,-.017,10.976,12.162)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,16.857,12.162)"><path id="x1D463" d="M457 332q0 -81 -41 -161.5t-105.5 -131.5t-129.5 -51q-46 0 -79 30.5t-33 86.5q0 18 7 51q18 95 46 187q6 19 6 33q0 7 -7 7q-24 0 -78 -64l-20 23q32 48 73 77t78 29q33 0 33 -46q0 -38 -10 -70q-28 -92 -39 -152q-7 -38 -7 -57q0 -78 69 -78q68 0 118 75.5t50 194.5
q0 43 -12 57q-11 12 -11 24q0 19 15 35.5t34 16.5q18 0 30.5 -34.5t12.5 -81.5z" /></g><g transform="matrix(.017,-0,0,-.017,24.218,12.162)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg>, with <svg style="vertical-align:-3.56265pt;width:85.324997px;" id="M2" height="16.6625" version="1.1" viewBox="0 0 85.324997 16.6625" width="85.324997" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g><g transform="matrix(.017,-0,0,-.017,12.931,12.162)"><path id="x2264" d="M531 71l-474 214v50l474 215v-56l-416 -184l416 -183v-56zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,27.634,12.162)"><use xlink:href="#x1D453"/></g><g transform="matrix(.017,-0,0,-.017,38.548,12.162)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,44.429,12.162)"><use xlink:href="#x1D463"/></g><g transform="matrix(.017,-0,0,-.017,51.79,12.162)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,62.397,12.162)"><use xlink:href="#x2264"/></g><g transform="matrix(.017,-0,0,-.017,77.101,12.162)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> </svg> and <svg style="vertical-align:-3.56265pt;width:107.5375px;" id="M3" height="16.6625" version="1.1" viewBox="0 0 107.5375 16.6625" width="107.5375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><use xlink:href="#x1D453"/></g><g transform="matrix(.017,-0,0,-.017,10.976,12.162)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,16.857,12.162)"><use xlink:href="#x30"/></g><g transform="matrix(.017,-0,0,-.017,25.017,12.162)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,35.607,12.162)"><path id="x3D" d="M535 323h-483v50h483v-50zM535 138h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,50.311,12.162)"><use xlink:href="#x1D453"/></g><g transform="matrix(.017,-0,0,-.017,61.224,12.162)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,67.106,12.162)"><path id="x1D450" d="M383 397q0 -32 -35 -49q-12 -6 -23 8q-37 45 -84 45t-90 -71q-40 -65 -40 -167q0 -57 22 -86t59 -29q38 0 81.5 24.5t69.5 51.5l16 -21q-44 -53 -104 -84t-109 -31q-56 0 -89.5 41t-33.5 117q0 61 30 124t79 105q33 28 81 50.5t86 22.5q34 0 59 -15.5t25 -35.5z" /></g><g transform="matrix(.017,-0,0,-.017,74.007,12.162)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,84.614,12.162)"><use xlink:href="#x3D"/></g><g transform="matrix(.017,-0,0,-.017,99.318,12.162)"><use xlink:href="#x31"/></g> </svg>, which is fitted in the ELT. What goes in the making of the ELT in this scenario is not the boost speed <svg style="vertical-align:-0.1638pt;width:7.4875002px;" id="M4" height="7.9124999" version="1.1" viewBox="0 0 7.4875002 7.9124999" width="7.4875002" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.638)"><use xlink:href="#x1D463"/></g> </svg>, as ascertained by two inertial observers in uniform relative motion (URM), but <svg style="vertical-align:-3.56265pt;width:55.049999px;" id="M5" height="16.6625" version="1.1" viewBox="0 0 55.049999 16.6625" width="55.049999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><use xlink:href="#x1D463"/></g><g transform="matrix(.017,-0,0,-.017,11.197,12.162)"><path id="xD7" d="M528 54l-36 -38l-198 201l-198 -201l-36 38l197 200l-197 201l36 38l198 -202l198 202l36 -38l-197 -201z" /></g><g transform="matrix(.017,-0,0,-.017,24.949,12.162)"><use xlink:href="#x1D453"/></g><g transform="matrix(.017,-0,0,-.017,35.862,12.162)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,41.743,12.162)"><use xlink:href="#x1D463"/></g><g transform="matrix(.017,-0,0,-.017,49.104,12.162)"><use xlink:href="#x29"/></g> </svg>. The second scenario infers the preexistence of two rest-mass-dependent superluminal speeds whereby the ELTs are finite at the light speed <svg style="vertical-align:-0.1638pt;width:7.0250001px;" id="M6" height="7.9499998" version="1.1" viewBox="0 0 7.0250001 7.9499998" width="7.0250001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.675)"><use xlink:href="#x1D450"/></g> </svg>. Particle energies are evaluated in this scenario at <svg style="vertical-align:-0.1638pt;width:7.0250001px;" id="M7" height="7.9499998" version="1.1" viewBox="0 0 7.0250001 7.9499998" width="7.0250001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.675)"><use xlink:href="#x1D450"/></g> </svg> for several particles, including the neutrinos, and are auspiciously found to be below the GKZ energy cutoff and in compliance with a host of worldwide ultrahigh energy cosmic ray data. Section 3 presents two broad scenarios involving a number of novel nonlinear LTs (NLTs) featuring small Lorentz invariance violations (LIVs), as well as resurrecting the notion of simultaneity for limited spacetime events as perceived by two observers in URM. These inquiries corroborate that NLTs could be potent tools for investigating LIVs past the customary LTs.