This paper is devoted to event-triggered control design for linear systems based on function observer. More specifically, the main purpose is to design event-triggered mechanisms that trigger transmissions when the difference between the current value of the system and its previously transmitted value which includes the plant output or the function observer output exceeds an additional threshold. For such an eventtriggered mechanism, we derive conditions in terms of matrix inequality to guarantee the stability as well as longer inter-event time. We propose two approaches to investigate the closed-loop model, namely, reformulating the event-triggered control system as a hybrid system and interpreting the event-induced error as exogenous disturbance. Furthermore, the minimum inter-event time is guaranteed to be strictly positive. An example is presented to illustrate the feasibility and efficiency of the theoretic results.
Read full abstract