Fault tolerance is a critical aspect for any wireless sensor network (WSN), which can be defined in plain terms as the quality of being dependable or performing consistently well. In other words, it may be described as the effectiveness of fault tolerance in the event of crucial component failures in the network. As a WSN is composed of sensors with constrained energy resources, network disconnections and faults may occur because of a power failure or exhaustion of the battery. When such a network is used for precision agriculture, which needs periodic and timely readings from the agricultural field, necessary measures are needed to handle the effects of such faults in the network. As climate change is affecting many parts of the globe, WSN-based precision agriculture could provide timely and early warnings to the farmers about unpredictable weather events and they could take the necessary measures to save their crops or to lessen the potential damage. Considering this as a critical application area, in this paper, we propose a fault-tolerant scheme for WSNs deployed for precision agriculture. Along with the description of our mechanism, we provide a theoretical operational model, simulation, analysis, and a formal verification using the UPPAAL model checker.
Read full abstract