Event detection is a crucial task in information extraction. Existing research primarily focuses on machine automatic detection tasks, which often perform poorly in certain practical applications. To address this, an interactive event-detection mode of “machine recommendation-human review–machine incremental learning” was proposed. In this mode, we study a few-shot continual class-incremental learning scenario, where the challenge is to learn new-class events with limited samples while preserving memory of old class events. To tackle these challenges, we propose a class-incremental learning method for interactive event detection via Interaction, Contrast and Distillation (ICD). We design a replay strategy based on representative and confusable samples to retain the most valuable samples under limited conditions; we introduce semantic-boundary-smoothness contrastive learning for effective learning of new-class events with few samples; and we employ hierarchical distillation to mitigate catastrophic forgetting. These methods complement each other and show strong performance. Experimental results demonstrate that, in the 5-shot 5-round class incremental-learning settings on two Chinese event-detection datasets ACE and DuEE, our method achieves final recall rates of 71.48% and 90.39%, respectively, improving by 6.86% and 3.90% over the best baseline methods.
Read full abstract