The purpose of this study was to optimize the infectivity of four different orthoflaviviruses in mice for evaluating antiviral drugs by using wild-type mice with intact interferon responses, type 1 interferon alpha/beta receptor knockout mice, or by injecting wild type C57BL/6 mice with varying doses of anti-type 1 interferon receptor antibody (MAR1-5A3) to optimize the infectivity and lethality. West Nile virus productively infected wild-type C57BL/6 mice to cause lethality, whereas Usutu virus required a complete absence of type 1 interferon receptor function. Deer tick virus (lineage 2 Powassan virus) and Japanese encephalitis viruses required a dampening of type 1 interferon responses by adjusting the doses of MAR1-5A3 antibody injections. Challenge dose-responsive mortality, weight loss, and viral titers of these two viruses were observed if the type 1 interferon responses were dampened with MAR1-5A3. Conversely, without MAR1-5A3 injections, these disease phenotypes were not viral challenge dose-responsive. From these different interferon-responsive models, the appropriate lethality was identified to determine that 7-deaza-2'-C-methyladenosine has high efficacy for West Nile and Usutu viruses, and low efficacy for deer tick and Japanese encephalitis viruses.