The aim of this work was to stabilize oil-in-water nanoemulsion containing sage (salvia officinalis) essential oil, for enhancing its physicochemical stability and enlarging its industrial applications. New β-cyclodextrin nanosponges were synthesized by polycondensation using naphthalene dicarboxylic acid as cross-linking agent, the latter system was characterized by FTIR spectroscopy, SEM, BET, and powder XRD. Nanoemulsions stabilized by free β-cyclodextrin or nanosponges were prepared, their physicochemical properties were determined (particles size, zeta potential, viscosity, turbidity, and essential oil content) and their stability was studied at different storage temperatures (4 °C, 20 °C, and 40 °C) during 3 months. Pharmaceutical application of prepared nanoemulsions was investigated in vitro by dissolution test study and in vivo by their antidiabetic activity evaluation in rats. Sage essential oil nanoemulsion stabilized by β-cyclodextrin-naphthalene dicarboxylic acid nanosponges presents very high stability and promising uses in pharmaceutical industry.