3D human avatar reconstruction aims to reconstruct the 3D geometric shape and appearance of the human body from various data inputs, such as images, videos, and depth information, acting as a key component in human-oriented 3D vision in the metaverse. With the progress in neural fields for 3D reconstruction in recent years, significant advancements have been made in this research area for shape accuracy and appearance quality. Meanwhile, substantial efforts on dynamic avatars with the representation of neural fields have exhibited their effect. Although significant improvements have been achieved, challenges still exist in in-the-wild and complex environments, detailed shape recovery, and interactivity in real-world applications. In this survey, we present a comprehensive overview of 3D human avatar reconstruction methods using advanced neural fields. We start by introducing the background of 3D human avatar reconstruction and the mainstream paradigms with neural fields. Subsequently, representative research studies are classified based on their representation and avatar partswith detailed discussion. Moreover, we summarize the commonly used available datasets, evaluation metrics, and results in the research area. In the end, we discuss the open problems and highlight the promising future directions, hoping to inspire novel ideas and promote further research in this area.
Read full abstract