The nuclear industry and other high-radiation environments often need remote monitoring equipment with advanced cameras to achieve precise remote control operations. CMOS image sensors, as a critical component of these cameras, get exposed to γ-ray irradiation while operating in such environments, which causes performance degradation that adversely affects camera resolution. This study conducted total ionizing dose experiments on CMOS image sensors and camera systems and thoroughly analyzed the impact mechanisms of the dark current, Full Well Capacity, and quantum efficiency of CMOS image sensors on camera resolution. A quantitative evaluation formula was established to evaluate the impact of Full Well Capacity and quantum efficiency of the CMOS image sensor on camera resolution. This study provides a theoretical basis for the evaluation of the radiation resistance of cameras in environments with strong nuclear radiation and the development of radiation-resistant cameras.
Read full abstract