Prey may use multiple sensory channels to detect predators, whose cues may differ in altered sensory environments, such as turbid conditions. Depending on the environment, prey may use cues in an additive/complementary manner or in a compensatory manner. First, to determine whether the purely aquatic Barton Springs salamander, Eurycea sosorum, show an antipredator response to visual cues, we examined their activity when exposed to either visual cues of a predatory fish (Lepomis cyanellus) or a non-predatory fish (Etheostoma lepidum). Salamanders decreased activity in response to predator visual cues only. Then, we examined the antipredator response of these salamanders to all matched and mismatched combinations of chemical and visual cues of the same predatory and non-predatory fish in clear and low turbidity conditions. Salamanders decreased activity in response to predator chemical cues matched with predator visual cues or mismatched with non-predator visual cues. Salamanders also increased latency to first move to predator chemical cues mismatched with non-predator visual cues. Salamanders decreased activity and increased latency to first move more in clear as opposed to turbid conditions in all treatment combinations. Our results indicate that salamanders under all conditions and treatments preferentially rely on chemical cues to determine antipredator behavior, although visual cues are potentially utilized in conjunction for latency to first move. Our results also have potential conservation implications, as decreased antipredator behavior was seen in turbid conditions. These results reveal complexity of antipredator behavior in response to multiple cues under different environmental conditions, which is especially important when considering endangered species.
Read full abstract