The automotive industry has a long history in improving the environmental performance of vehicles - fuel economy and emission improvements, introduction of recycled and renewable materials, etc. The European Union also aims at improving the environmental performance of products by reducing, in particular, waste resulting from End-of-Life Vehicles (ELVs) for example. The European Commission estimates that ELVs contribute to approximately 1 % of the total waste in Europe [9]. Other European Union strategies are considering more life cycle aspects, as well as other impacts including resource or climate change. This article is summarizing the results of a European Commission funded project (LIRECAR) that aims at identifying the environmental impacts and relevance for combinations of recycling / recovery and lightweight vehicle design options over the whole life cycle of a vehicle - i.e. manufacturing, use and recycling/recovery. Three, independent and scientific LCA experts reviewed the study according to ISO 14040. From the beginning, representatives of all Life Cycle Stakeholders have been involved (European materials & supplier associations, an environmental Non-Governmental Organization, recycler’s association). The study compared 3 sets of theoretical vehicle weight scenarios: 1000 kg reference (material range of today’s end-of-life, mid-sized vehicles produced in the early 1990’s) and 2 lightweight scenarios for 100 kg and 250 kg less weight based on reference functions (in terms of comfort, safety, etc.) and a vehicle concept. The scenarios are represented by their material range of a broad range of lightweight strategies of most European car manufacturers. In parallel, three End-of-Life (EOL) scenarios are considered: EOL today and two theoretical extreme scenarios (100% recycling, respectively, 100% recovery of shredder residue fractions that are disposed of today). The technical and economical feasibility of the studied scenarios is not taken into consideration (e.g. 100% recycling is not possible). Significant differences between the various, studied weight scenarios were determined in several scenarios for the environmental categories of global warming, ozone depletion, photochemical oxidant creation (summer smog), abiotic resource depletion, and hazardous waste. However, these improvement potentials can be only realized under well defined conditions (e.g. material compositions, specific fuel reduction values and EOL credits) based on case-by-case assessments for improvements over the course of the life cycle. Looking at the studied scenarios, the relative contribution of the EOL phase represents 5% or less of the total life cycle impact for most selected impact categories and scenarios. The EOL technology variations studied do not impact significantly the considered environmental impacts. Exceptions include total waste, as long as stockpile goods (overburden, tailings and ore/coal processing residues) and EOL credits are considered. LIRECAR focuses only on lightweight/recycling, questions whereas other measures (changes in safety or comfort standards, propulsion improvements for CO2, user behavior) are beyond the scope of the study. The conclusions are also not necessarily transferable to other vehicle concepts. However, for the question of end-of-life options, it can be concluded that LIRECAR cannot support any general recommendation and/or mandatory actions to improve recycling if lightweight is affected. Also, looking at each vehicle, no justification could be found for the general assumption that lightweight and recycling greatly influence the affected environmental dimension (Global Warming Potential or resource depletion and waste, respectively). LIRECAR showed that this general assumption is not true under all analyzed circumstances and not as significant as suggested. Further discussions and product development targets shall not focus on generic targets that define the approach/technology concerned with how to achieve environmental improvement (weight reduction [kg], recycling quota [%]), but on overall life cycle improvement). To enable this case-by-case assessment, exchanges of necessary information with suppliers are especially relevant.