Trees' height (H) and diameter (D) growth depend on many factors and vary between species. This study examined H and D growth of Juniperus excelsa, J. foetidissima, Pinus nigra, Quercus cerris and Q. pubescens, growing naturally in the Central Anatolian forest steppe and the site conditions (human impact, woody plant coverage, tree density, altitude, exposure) that influence H and D growth. The present study hypothesises that the decline of height growth might indicate limited rainfall in the region. Two datasets were distinguished for the statistical analysis: the first comprised maximum height (MH) and diameter (MD), human impact, woody plant coverage, and tree density of the sampling plots, and the second comprised all measured Hs and Ds of the sampling plots, exposition, and altitude. Variance and correlation analysis were applied to both datasets to determine the relationships between parameters. Non-linear regression analysis was applied to both datasets to provide H-prediction equations. According to the results of statistical analyses applied to two datasets, each tree species reacted differently to the site conditions. However, the most relevant relationship was found between height and diameter growth for all species. The MH-MD and D-H of P. nigra (except the altitude) and Quercus cerris + Q. pubescens (except the human impact) did not respond to any of the site conditions remarkably, while those of J. foetidissima responded to all of the site conditions examined. The H and D of each species were affected by the exposure. While the highest number of trees was found on N-exposed slopes, the heights trees of each species were found on N- and NW-exposed slopes. The results of non-linear regression analysis applied on both datasets of H-prediction equations of each species involved different parameters, even though the diameter was the only relevant variable for height prediction. Although it is not possible to reach a definite conclusion for other species within the scope of this study, P. nigra had a shorter height in Central Anatolia than in areas with better environmental conditions. Height growth might indicate water limitations of Central Anatolian region, but genetic code might be an important factor of how a species will cope with drought.