BackgroundEurasian pigs have undergone lineage admixture throughout history. It has been confirmed that the genes of indigenous pig breeds in China have been introduced into Western commercial pigs, providing genetic materials for breeding Western pigs. Pigs in Taihu Lake region (TL), such as the Meishan pig and Erhualian pig, serve as typical representatives of indigenous pig breeds in China due to their high reproductive performances. These pigs have also been imported into European countries in 1970 and 1980 s. They have played a positive role in improving the reproductive performances in European commercial pigs such as French Large White pigs (FLW). However, it is currently unclear if the lineage of TL pigs have been introgressed into the Danish Large White pigs (DLW), which are also known for their high reproductive performances in European pigs. To systematically identify genomic regions in which TL pigs have introgressed into DLW pigs and their physiological functions, we collected the re-sequencing data from 304 Eurasian pigs, to identify shared haplotypes between DLW and TL pigs.ResultsThe findings revealed the presence of introgressed genomic regions from TL pigs in the genome of DLW pigs indeed. The genes annotated within these regions were found to be mainly enriched in neurodevelopmental pathways. Furthermore, we found that the 115 kb region located in SSC16 exhibited highly shared haplotypes between TL and DLW pigs. The major haplotype of TL pigs in this region could significantly improve reproductive performances in various pig populations. Around this genomic region, NDUFS4 gene was highly expressed and showed differential expression in multiple reproductive tissues between extremely high and low farrowing Erhualian pigs. This suggested that NDUFS4 gene could be an important candidate causal gene responsible for affecting the reproductive performances of DLW pigs.ConclusionsOur study has furthered our knowledge of the pattern of introgression from TL into DLW pigs and the potential effects on the fertility of DLW pigs.
Read full abstract