The theoretical price of a financial option is given by the expectation of its discounted expiry time payoff. The computation of this expectation depends on the density of the value of the underlying instrument at expiry time. This density depends on both the parametric model assumed for the behaviour of the underlying, and the values of parameters within the model, such as volatility. However neither the model, nor the parameter values are known. Common practice when pricing options is to assume a specific model, such as geometric Brownian Motion, and to use point estimates of the model parameters, thereby precisely defining a density function. We explicitly acknowledge the uncertainty of model and parameters by constructing the predictive density of the underlying as an average of model predictive densities, weighted by each model's posterior probability. A model's predictive density is constructed by integrating its transition density function by the posterior distribution of its parameters. This is an extension to Bayesian model averaging. Sampling importance-resampling and Monte Carlo algorithms implement the computation. The advantage of this method is that rather than falsely assuming the model and parameter values are known, inherent ignorance is acknowledged and dealt with in a mathematically logical manner, which utilises all information from past and current observations to generate and update option prices. Moreover point estimates for parameters are unnecessary. We use this method to price a European Call option on a share index.