The present paper addresses the following question: for a geometric random tree in $\mathbb{R} ^{2}$, how many semi-infinite branches cross the circle $\mathcal{C} _{r}$ centered at the origin and with a large radius $r$? We develop a method ensuring that the expectation of the number $\chi _{r}$ of these semi-infinite branches is $o(r)$. The result follows from the fact that, far from the origin, the distribution of the tree is close to that of an appropriate directed forest which lacks bi-infinite paths. In order to illustrate its robustness, the method is applied to three different models: the Radial Poisson Tree (RPT), the Euclidean First-Passage Percolation (FPP) Tree and the Directed Last-Passage Percolation (LPP) Tree. Moreover, using a coalescence time estimate for the directed forest approximating the RPT, we show that for the RPT $\chi _{r}$ is $o(r^{1-\eta })$, for any $0<\eta <1/4$, almost surely and in expectation.
Read full abstract