Antifungal susceptibility testing is an essential tool for guiding therapy, although EUCAST and CLSI reference methods are often available only in specialized centers. We studied the performance of an agar-based screening method for the detection of azole resistance in Aspergillus fumigatus cultures. The VIPcheck consists of four wells containing voriconazole, itraconazole, posaconazole, or a growth control. Ninety-six A. fumigatus isolates were used. Thirty-three isolates harbored a known resistance mechanism: TR34/L98H (11 isolates), TR46/Y121F/T289A (6 isolates), TR53 (2 isolates), and 14 isolates with other cyp51A gene point mutations. Eighteen resistant isolates had no cyp51A-mediated azole resistance. Forty-five isolates had a wild-type (WT) azole phenotype. Four technicians and two inexperienced interns, blinded to the genotype/phenotype, read the plates visually after 24 h and 48 h and documented minimal growth, uninhibited growth, and no growth. The performance was compared to the EUCAST method. After 24 h of incubation, the mean sensitivity and specificity were 0.54 and 1.00, respectively, with uninhibited growth as the threshold. After 48 h of incubation, the performance mean sensitivity and specificity were 0.98 and 0.93, respectively, with minimal growth. The performance was not affected by observer experience in mycology. The interclass correlation coefficient was 0.87 after 24 h and 0.85 after 48 h. VIPcheck enabled the selection of azole-resistant A. fumigatus colonies, with a mean sensitivity and specificity of 0.98 and 0.93, respectively. Uninhibited growth on any azole-containing well after 24 h and minimal growth after 48 h were indicative of resistance. These results indicate that the VIPcheck is an easy-to-use tool for azole resistance screening and the selection of colonies that require MIC testing.
Read full abstract