Lanthanide nanoprobes have attracted extensive attention for applications in cellular imaging and biological sensing. Herein, water-dispersible europium (III)-based (Eu(III)-based) nanoprobes were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) of hydrophobic monomers (Eu(III)-containing monomer and methyl methacrylate (MMA)) using hydrophilic macro-chain transfer agent poly(PEGMA)-CTA. The resulted poly(PMEu) nanoprobes showed spherical in shape in good monodispersity with average diameters of around 210 nm. The poly(PMEu) nanoprobles excellent aqueous dispersity, high aqueous stability and good luminescence properties with quantum yields of 37.21% and fluorescence lifetime of 312.4 μs. Moreover, the poly(PMEu) nanoprobes exhibited good cellular biocompatibility with cell viabilities of 88.2% and high fluorescence intensity for in vitro cellular imaging. The present approach provides a facile strategy for fabrication of luminescent Eu(III)-based nanoprobes with great potential applications for biological imaging.
Read full abstract