It is a grand challenge to reveal the causal effects of DNA variants in complex phenotypes. Although statistical techniques can establish correlations between genotypes and phenotypes in Genome-Wide Association Studies (GWAS), they often fail when the variant is rare. The emerging Network-based Association Studies aim to address this shortcoming in statistical analysis, but are mainly applied to coding variations. Increasing evidences suggest that non-coding variants play critical roles in the etiology of complex diseases. However, few computational tools are available to study the effect of rare non-coding variants on phenotypes. Here we have developed a multiscale modeling variant-to-function-to-network framework VariFunNet to address these challenges. VariFunNet first predict the functional variations of molecular interactions, which result from the non-coding variants. Then we incorporate the genes associated with the functional variation into a tissue-specific gene network, and identify subnetworks that transmit the functional variation to molecular phenotypes. Finally, we quantify the functional implication of the subnetwork, and prioritize the association of the non-coding variants with the phenotype. We have applied VariFunNet to investigating the causal effect of rare non-coding variants on Alzheimer's disease (AD). Among top 21 ranked causal non-coding variants, 16 of them are directly supported by existing evidences. The remaining 5 novel variants dysregulate multiple downstream biological processes, all of which are associated with the pathology of AD. Furthermore, we propose potential new drug targets that may modulate diverse pathways responsible for AD. These findings may shed new light on discovering new biomarkers and therapies for the prevention, diagnosis, and treatment of AD. Our results suggest that multiscale modeling is a potentially powerful approach to studying causal genotype-phenotype associations.