Pyrolytic carbon black (PCB) made from used tires was used in ethylene-propylene-diene copolymers (EPDM). The microstructure of PCB was characterized by scanning electron microscopy (SEM). PCB was compounded with EPDM to prepare EPDM vulcanizates. The effects of PCB on the processing properties of EPDM compounds and the mechanical properties of vulcanizates were investigated and compared with other traditional fillers such as semi-reinforcing furnace black (N774), light calcium carbonate (CaCO3) and thermal black (N990). At the same time, the rheological behavior of EPDM compounds filled with different fillers was characterized by capillary rheometrics. The SEM photos showed that the particle shape was quiet different from that of CaCO3 and N990, it was similar to that of N774. The primary particle size was smaller than that of N774, but the aggregate size of PCB was larger than that of N774. The effect of PCB on the pro- cessing properties of EPDM compounds was similar to that of other fillers. Among the four fillers, PCB imparted EPDM compounds with higher Mooney viscosity. With the increase of filler content, the scorch time and optimum curing time of EPDM compounds changed little. The reinforcing effect of PCB was similar to that of N990, but inferior to that of N774. With the increase of PCB content, tensile strength, tear strength, and modulus at 100% elongation of EPDM vulcanizates increased significantly. When EPDM was filled with 50 phr PCB, the tear strength of EPDM vulcanizates increased by 3 times, compared with that of EPDM gum vulcanizates. The appearance of EPDM extrudate filled with PCB was coarser than that of other fillers.
Read full abstract