Cross-linked polyethylene (XLPE) is applied in most advanced high-voltage direct-current (HVDC) power cable insulations, which are produced via dicumyl peroxide (DCP) technology. The electrical conductivity of insulation material can be increased by cross-linking byproducts from the DCP process. Hence, currently much attention is being paid to a new process to produce cross-linking byproduct-free XLPE. The cross-linking in situ between ethylene-glycidyl methacrylate copolymer and 1,5-disubtituted pentane via reactive compounding is a substitute for DCP. The reaction potential energy information of the eighteen reaction channels was obtained at the B3LYP/6-311+G(d,p) level. Results demonstrated that epoxy groups and 1,5-disubtituted reactive groups can react in situ to realize the XLPE-based network structure via covalent linking, and epoxy ring openings yielded ester. 1,5-disubtituted pentane played a cross-linker role. The reactivity of the carboxyl group was stronger than that of the sulfydryl or hydroxyl group. The reaction channel RTS1 was more kinetically favorable due to the lower reaction Gibbs energy barrier height of 1.95 eV. The cross-linking network construction of the new XLPE insulation without byproducts opens up the possibility of DCP substitution, which is beneficial to furthering the design of thermoplastic insulation materials for power cables in the future.
Read full abstract