Molecularly imprinted polymer (MIP) is dedicated to the adsorption of target substances in the aqueous phase, but ignores the adsorption in a more complex environment (oily wastewater). In order to explore the application field of existing MIPs, acorn-like Janus particles were fabricated by photo-initiated seed swelling polymerization. A novel amphiphilic Janus-MIP was prepared with the acorn-like Janus particles as matrix, methacrylic acid, ethylene dimethacrylate and oxytetracycline (OTC) as functional monomers, crosslinking agents and template molecules via surface initiated-atom transfer radical polymerization (SI-ATRP). For comparison, the poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EDMA)) microspheres were also utilized as the matrix to prepare common spherical-MIP. The adsorption capacity of Janus-MIP for OTC was 23.8 mg g−1 in oil-water system, while the adsorption capacity of spherical-MIP for OTC was only 12.6 mg g−1 in the same system. At the same time, through high performance liquid chromatography (HPLC) analysis, Janus-MIP can specifically recognize and adsorb trace OTC in restaurant oily wastewater samples, and the proposed method exhibited a lower limit of detection (LOD, 3 ng mL−1) and a higher OTC recovery rate (94.2 %–98.4 %). This work demonstrated great potential for the detection and control of OTC contamination from real samples in an oil-water mixed environment.
Read full abstract