The consumption of poultry eggs has increased in recent years owing to the abundance of production and improvements in living standards. Thus, the safety requirements of poultry eggs have gradually increased. At present, few reports on analytical methods to determine banned veterinary drugs during egg-laying period in poultry eggs have been published. Therefore, establishing high-throughput and efficient screening methods to monitor banned veterinary drugs during egg-laying period is imperative. In this study, an analytical method based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with QuEChERS-based techniques was developed for the simultaneous determination of 31 banned veterinary drugs encompassing nine drug classes (macrolides, antipyretic and analgesic drugs, sulfonamides, antibacterial synergists, anticoccidials, antinematodes, quinolones, tetracyclines, amphenicols) in different types of poultry eggs. The main factors affecting the response, recovery, and sensitivity of the method, such as the extraction solvent, purification adsorbent, LC separation conditions, and MS/MS parameters, were optimized during sample pretreatment and instrumental analysis. The 31 veterinary drug residues in 2.00 g eggs were extracted with 2 mL of 0.1 mol/L ethylene diamine tetraacetic acid disodium solution and 8 mL 3% acetic acid acetonitrile solution, and salted out with 2 g of sodium chloride. After centrifugation, 5 mL of the supernatant was cleaned-up using the QuEChERS method with 100 mg of octadecylsilane-bonded silica gel (C18), 50 mg of N-propylethylenediamine (PSA), and 50 mg of NH2-based sorbents. After nitrogen blowing and redissolution, the 31 target analytes were separated on a Waters CORTECS UPLC C18 analytical chromatographic column (150 mm×2.1 mm, 1.8 μm) at a flow rate, column temperature, and injection volume of 0.4 mL/min, 30 ℃, and 5 μL, respectively. Among these analytes, 26 analytes were acquired in dynamic multiple reaction monitoring (MRM) mode under positive electrospray ionization (ESI+) conditions using (A) 5 mmol/L ammonium acetate (pH 4.5) and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-30%B; 2.0-7.5 min, 30%B-50%B; 7.5-10.0 min, 50%B; 10.0-10.1 min, 50%B-100%B; 10.1-12.0 min, 100%B; 12.0-12.1 min, 100%B-12%B; The five other target analytes were acquired in MRM mode under negative electrospray ionization (ESI-) conditions using (A) H2O and (B) acetonitrile as mobile phases. The gradient elution program was as follows: 0-2.0 min, 12%B-40%B; 2.0-6.0 min, 40%B-80%B; 6.0-6.1 min, 80%B-100%B; 6.1-8.0 min, 100%B; 8.0-8.1 min, 100%B-12%B. Matrix-matched external standard calibration was used for quantification. The results showed that all the compounds had good linear relationships within their respective ranges, with correlation coefficients of >0.99. The limits of detection (LODs) and quantitation (LOQs) were 0.3-3.0 μg/kg and 1.0-10.0 μg/kg, respectively. The average recoveries of the 31 banned veterinary drugs spiked at three levels (LOQ, maximum residue limit (MRL), and 2MRL) in poultry eggs ranged from 61.2% to 105.7%, and the relative standard deviations (RSDs) ranged from 1.8% to 17.6%. The developed method was used to detect and analyze banned veterinary drugs in 30 commercial poultry egg samples, including 20 eggs, 5 duck eggs, and 5 goose eggs. Enrofloxacin was detected in one egg with a content of 12.3 μg/kg. The proposed method is simple, economical, practical, and capable of the simultaneous determination of multiple classes of banned veterinary drugs in poultry eggs.