Sulforaphane is a chiral phytochemical with chemopreventive properties. The presence of a stereogenic sulfur atom is responsible for the chirality of the natural isothiocyanate. The key role of sulfur chirality in biological activity is underscored by studies of the efficacy of individual enantiomers as chemoprotective agents. The predominant native (R) enantiomer is active, whereas the (S) antipode is inactive or has little or no biological activity. Here we provide an enantioselective high-performance liquid chromatography (HPLC) protocol for the direct and complete resolution of sulforaphane and its chiral natural homologs with different aliphatic chain lengths between the sulfinyl sulfur and isothiocyanate group, namely iberin, alyssin, and hesperin. The chromatographic separations were carried out on the immobilized-type CHIRALPAK IH-3 chiral stationary phase with amylose tris-[(S)-methylbenzylcarbamate] as a chiral selector. The effects of different mobile phases consisting of pure alcoholic solvents and hydroalcoholic mixtures on enantiomer retention and enantioselectivity were carefully investigated. Simple and environmentally friendly enantioselective conditions for the resolution of all chiral ITCs were found. In particular, pure ethanol and highly aqueous mobile phases gave excellent enantioseparations. The retention factors of the enantiomers were recorded as the water content in the aqueous-organic modifier (methanol, ethanol, or acetonitrile) mobile phases progressively varied. U-shaped retention maps were generated, indicating a dual and competitive hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography retention mechanism on the CHIRALPAK IH-3 chiral stationary phase. Finally, experimental chiroptical studies performed in ethanol solution showed that the (R) enantiomers were eluted before the (S) counterpart under all eluent conditions investigated.