The prevalence of non-alcoholic fatty liver disease (NAFLD) is currently of great concern due to its risk of developing T2DM and cardiovascular disease. The development of NAFLD may be initiated by de novo lipogenesis in the hepatocytes. Sirtuin1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), are responsible for the lipogenesis mechanism. Interestingly, plant sterols, such as beta-sitosterol and stigmasterol, have the potential to lower the LDL-cholesterol in dyslipidemic patients. Beta-sitosterol was present in the ethanol extract of Lygodium microphyllum herbs at a concentration of 283.55µg/g extract. This sterol interacted with the active allosteric-binding site of SIRT1 and AMPK similarly to the proteins' activators. To investigate the anti-lipogenesis activity of the ethanol extract of L. microphyllum (ELM) in the liver tissue of rats through the SIRT1 and AMPK levels. Forty male Wistar rats were used in this study: (1) normal control group; (2) high-fat high-fructose diet (HFHFD) rats; (3) HFHFD rats treated with metformin; (4) HFHFD rats treated with resveratrol; (5) HFHFD rats treated with beta-sitosterol; (6-8) HFHFD rats treated with ELM doses of 200, 400, and 600 mg/kg BW. Rats in the normal control group were fed regular chow, while other groups of rats were given HFHFD for 35 days. All drugs were given orally on D15 till D35. On D35, the rats were sacrificed, and the liver organs were examined for the liver index, morphology, NAFLD activity score (NAS), and levels of SIRT1 and AMPK. ELM improves the morphology, the liver index, the steatosis condition, and the NAS of HFHFD-induced NAFLD rats. ELM increases the levels of SIRT1 and AMPK in the liver tissue of HFHFD-induced NAFLD rats. ELM may have the potential to inhibit de novo lipogenesis by increasing the levels of SIRT1 and AMPK.
Read full abstract