This study examined the role of protein supplementation at the various steps of the in vitro production of bovine embryos derived from two different morphological categories of COC. The basic medium was TCM 199 and was supplemented with hormones during maturation in vitro and either estrous cow serum (ECS), bovine serum albumin (BSA) at various concentrations or polyvinyl-alcohol (PVA). Fertilization in vitro was carried out using frozen-thawed semen or one bull in Fert-talp containing heparin, hypotaurin and epinephrine and either 6 mg/ml BSA or 1 mg/ml PVA. In vitro culture up to the blastocyst stage was performed in TCM 199 supplemented with either ECS, BSA or PVA. The first experiment investigated the influence of different medium-supplements (ECS, BSA or PVA) on nuclear maturation and revealed no significant differences among treatment groups nor between categories of COC (63.9% to 74.9% and 48.9% to 77.0%, respectively). The time course of in vitro fertilization was elucidated in Experiment 2 in medium supplemented with either protein or PVA during maturation and fertilization. Penetration was not affected (70.9% to 79.3% penetration 12 h after onset of oocyte-sperm-co-incubation), but formation of pronuclei was decreased (P < 0.05) 12 and 19 h after onset of oocyte-sperm-co-incubation and was retarded in medium supplemented with PVA (12 h: 63.8 vs 21.4 %; 19 h: 57.5 vs 20.8 %, respectively) while cleavage was not affected. In Experiment 3, six treatment groups were formed in which the two different morphological categories of cumulus-oocytecomplexes (COC) were incubated in basic medium supplemented with 1) ECS during maturation and embryo culture and BSA during fertilization; 2) PVA during maturation and embryo culture, fertilization medium with PVA; 3) PVA during maturation and embryo culture, fertilization medium with BSA; 4) BSA (1 mg/ml) during maturation, fertilization and embryo culture; 5) BSA (6 mg/ml) during maturation, fertilization and embryo culture; and 6) BSA (10 mg/ml) during maturation, fertilization and embryo culture. The rates of cleavage and the development to morulae or blastocysts did not differ (P > 0.05) among treatment groups and between both categories of COC and were showing a high degree of variability (cleavage 54.0% to 65.1% and 41.3% to 55.7%, respectively; morulae 25.3% to 53.0% and 26.0% to 51.2%, respectively; blastocysts 5.4% to 24.7% and 0.6% to 20.3%, respectively). Parthenogenetic activation only rarely occurred in medium containing PVA throughout all steps of in vitro production of bovine embryos (Experiment 4) and led to early cleavage stages (8%), but no development to morula- or blastocyst-stages was observed. It is concluded that 1) formation of pronuclei was retarded in medium lacking protein-supplementation, indicating that BSA is required for regular fertilization in vitro and 2) under our experimental conditions, protein-supplementation is not necessary for maturation and development up to the blastocyst stage in vitro.
Read full abstract