Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.Editor D. Koutsoyiannis
Read full abstract