The planning of vessel navigation along a tidal river is a complex task that can affect the efficiency of inland ports and intermodal chains. The availability of water may represent a significant restriction to port accessibility, having an impact on waiting times, cost and even safety. This paper presents a heuristic procedure to schedule vessels on a tidal waterway, which seeks to optimise navigation according to a multi-criteria objective function combining the number of vessels serviced, the total waiting time, the waterway occupation time and the number of crossing operations, where the term “crossing” implies inbound and outbound vessels passing each other. The procedure requires a previous step of estimation of real-time water depth, which identifies the critical points or navigation bottlenecks along the waterway, and contemplates the possibility of vessels having to anchor in the middle of their journey and wait for next tide rise. We validate the procedure through its application to a set of real and test problems and show that its results are reliable in terms of performance and solution quality.