Information on hearing thresholds is not always reliable as differences in these thresholds have been described even for the same species. This may partially be due to different methods used by different labs. A frequently used approach to obtain an estimate of hearing threshold is the electrophysiological recording of auditory brainstem responses (ABR). They are usually recorded under deep anesthesia and represent the auditory evoked far-field potentials at various levels in the central auditory pathway. Alternatively, several behavioral approaches are employed. These commonly use operant or classical conditioning to determine hearing thresholds. A potential disadvantage of these methods is that any sound conditioning may in principle alter auditory perception and therefore auditory thresholds. To exclude this type of methodological bias a prepulse inhibition (PPI) paradigm can be used where an audiogram can be determined without any kind of pre-training. Here we compare the threshold estimates obtained by two different ABR and PPI measurements where stimuli are presented in different contexts, either randomly or non-randomly, to test for a possible effect of auditory sensitization. In addition we test the effect of a frequency specific acoustic trauma on the audiograms obtained with both methods. In general we find behaviorally determined audiograms to be significantly lower in absolute thresh- old compared to ABR measurements. Furthermore non-randomized presentation context of the stimuli generally results in audiograms with 10 to 15 dB lower thresholds than pseudo-randomized presentation. Finally, the amount of threshold loss induced by acoustic trauma is similar for all methods tested.