The Ganzi–Xianshuihe Fault Zone is a large-scale sinistral strike-slip fault zone on the eastern Tibet. As the boundary fault zone of the Bayankala Block and the Chuandian Block, it controls the clockwise rotation of the southeastern Tibet. However, there is still controversy regarding the activity changes between fault zones. Therefore, accurately determining the slip rates of faults in the area is crucial for characterizing regional plate motions and assessing associated seismic hazards. We focused on studying four fault segments near the Ganzi–Xianshuihe Fault Zone, including the Manigango, Ganzi, Luhuo, and Daofu segments. In each segment, we selected typical sinistral piercing points and carried out Unmanned Aerial Vehicle (UAV) photogrammetry to obtain high-resolution terrain data. We utilized LaDiCaoz_V2.2 and GlobalMapper software (LaDiCaoz_V2.2 and Global Mapper v17.0) to measure the offsets, together with optically stimulated luminescence (OSL) dating, to constrain the timing of fault activity. The estimated slip rates for the Manigango, Ganzi, Luhuo, and Daofu segments are as follows: 9.2 ± 0.75 mm/yr, 9.59 ± 1.7 mm/yr, 4.23 ± 0.66 mm/yr, and 7.69 ± 0.76 mm/yr, respectively. Integrating previous results with slip rates estimated in this study, our analysis suggests the slip rate of the Ganzi–Xianshuihe Fault Zone is around 8–10 mm/year, exhibiting a consistent slip rate from northwest to southeast. This reflects the overall coordination of the movement on the eastern Tibet, with the strike-slip fault zone only controlling the direction of movement.