The Priestley–Taylor model of the Jet Propulsion Laboratory (PT-JPL) evapotranspiration (ET) model is relatively simple and has been widely used based on meteorological and satellite data. However, soil moisture (SM) constraints include a vapor pressure deficit (VPD) that causes large uncertainty. In this study, we proposed a PT-SinRH model by introducing a sine function of air relative humidity (RH) to replace RHVPD to characterize SM constraints, which can improve the accuracy of ET estimations. The PT-SinRH model is validated by eddy covariance (EC) data from 2000–2020. These data were collected by AmeriFlux at 28 sites on the conterminous United States (CONUS), and the land cover types of the sites vary from croplands to wetlands, grasslands, shrub lands and forests. The validation results from daily scale-based on-site and satellite data inputs showed that the PT-SinRH model estimates fit the observations with a coefficient of determination (R2) of 0.55, root-mean-square error (RMSE) of 17.5 W/m2, bias of −1.2 W/m2 and Kling–Gupta efficiency (KGE) of 0.70. Additionally, the PT-SinRH model based on reanalysis and satellite data inputs has an R2 of 0.49, an RMSE of 20.3 W/m2, a bias of −8.6 W/m2 and a KGE of 0.55. The PT-SinRH model showed better accuracy when using the site-measured meteorological data than when using reanalysis meteorological data as inputs. Additionally, compared with the PT-JPL model, the results demonstrate that our approach, i.e., PT-SinRH, improved ET estimates, increasing the R2 and KGE by 0.02 and decreasing the RMSE by about 0.6 W/m2. This simple but accurate method permits us to investigate the decadal variation in regional ET over the land.
Read full abstract