허스트 지수를 산정하기 위하여 기존에 여러 방법론들이 제안되어 왔다. 그러나, 이들 방법론들은 시계열들의 지속성에 대하여 각기 다른 특성들을 보이고 있음을 기존의 연구에서 알 수 있다 따라서 본 연구에서는 수문학에서 주로 이용하고 있는 보정용량, 조정용량, 수정조정용량 방법 이외에 생리학 분야와 전자 분야 등에서 이용되고 있는 1/f 파워 스펙트럼 밀도 분석, DFA, AVT 방법, 최우도법 등을 이용하여 허스트 지수를 산정하여 보았다. 즉, 단기간과 장기간 기억을 가진 카오스와 추계학적 시계열들에 대하여 각각의 방법들을 적용하여 비교 분석하고자 하였으며, 각 방법론들에 대한 장점 및 단점 그리고 한계에 대하여 논의하였다. There are many different techniques for the estimation of the Hurst exponent. However, the techniques can produce different characteristics for the persistence of a time series each other. This study uses several techniques such as adjusted range, resealed range(RR) analysis, modified restated range(MRR) analysis, 1/f power spectral density analysis, Maximum Likelihood Estimation(MLE), detrended fluctuations analysis(DFA), and aggregated variance time(AVT)method for the Hurst exponent estimation. The generated time series from chaos and stochastic systems are analyzed for the comparative study of the techniques. Then this study discusses the advantages and disadvantages of the techniques and also the limitations of them.