Amidst the increasingly escalating global concern regarding climate change, adopting a low-carbon approach has become crucial for charting the future developmental trajectory of urban areas. It also offers a novel angle for cities to avoid high-temperature risks. This paper estimates carbon emissions in Wuhan City from both direct and indirect aspects. Then, the ANN (artificial neural network)–CA (Cellular Automata) model is employed to establish three distinct development scenarios (Ecological Priority, Tight Growth, and Natural Growth) to predict future urban expansion. Additionally, the WRF (Weather Research and Forecasting Model)—UCM (Urban Canopy Model) model is used to investigate the thermal environmental impacts of varying urban development scenarios. This study uses a low-carbon perspective to explore how cities can develop scientifically sound urban strategies to meet climate change challenges and achieve sustainable development goals. The conclusions are as follows: (1) The net carbon emission for Wuhan in 2022 is estimated to be approximately 20.8353 million tonnes. Should the city maintain an average annual emission reduction rate of 10%, the carbon sink capacity of Wuhan would need to be enhanced by 382,200 tonnes by 2060. (2) In the absence of anthropogenic influence, there is a propensity for the urban construction zone of Wuhan to expand primarily towards the southeast and western sectors. (3) The Ecological Priority (EP) and Tight Growth (TG) scenarios are effective in alleviating the urban thermal environment, achieving a reduction of 0.88% and 2.48%, respectively, in the urban heat island index during afternoon hours. In contrast, the Natural Growth (NG) scenario results in a degradation of the urban thermal environment, with a significant increase of over 4% in the urban heat island index during the morning and evening periods. (4) An overabundance of urban green spaces and water bodies could exacerbate the urban heat island effect during the early morning and at night. The findings of this study enhance the comprehension of the climatic implications associated with various urban development paradigms and are instrumental in delineating future trajectories for low-carbon sustainable urban development models.
Read full abstract