Diets that provide a negative dietary anion cation difference (DCAD) and supplement with a vitamin D metabolite 25-OH-D3 (calcidiol) may increase calcium availability at parturition, and enhance piglet survival and performance. This factorial study assessed the effects of DCAD, calcidiol (50 µg/kg), and parity (parity 1 or >1) and their interactions. Large White and Landrace sows (n = 328), parity 1 to 8 were randomly allocated in blocks to treatment diets from day 103 of gestation until day 3 postfarrow: 1) negative DCAD without calcidiol (negative DCAD + no CA), n = 84, 2) negative DCAD with calcidiol (negative DCAD + CA) n = 84, 3) positive DCAD without calcidiol (negative DCAD + no CA), n = 81, and 4) positive DCAD with calcidiol (positive DCAD + CA), n = 79. Negative DCAD diets were acidified with an anionic feed (2kg/t) and magnesium sulfate (2kg/t). All treatment diets contained cholecalciferol at 1,000 IU/kg. Dry sow diets contained 14.8% crude protein (CP), 5.4% crude fiber (CF), 0.8% Ca, and 83 mEq/kg DCAD. Treatment diets 1 and 2 contained 17.5% CP, 7.3% CF, 0.8% Ca, and -2 mEq/kg DCAD. Treatment diets 3 and 4 contained 17.4% CP, 7.4% CF, 0.8% Ca, and 68 mEq/kg DCAD. Before farrowing, all negative DCAD sows had lower urine pH than all sows fed a positive DCAD (5.66 ± 0.05 and 6.29 ± 0.05, respectively; P < 0.01); urinary pH was acidified for both DCAD treatments indicating metabolic acidification. The percentage of sows with stillborn piglets was not affected by DCAD, calcidiol, or parity alone but sows fed the negative DCAD + CA diet had a 28% reduction in odds of stillbirth compared to the negative DCAD + no CA diet and even lesser odds to the positive DCAD + CA diet. At day 1 after farrowing, blood gas, and mineral and metabolite concentrations were consistent with feeding a negative DCAD diet and that negative DCAD diets influence energy metabolism, as indicated by increased glucose, cholesterol, and osteocalcin concentrations and reduced nonesterified free fatty acids and 3-hydroxybutyrate concentrations. In the subsequent litter, total piglets born and born alive (14.7 ± 0.3 and 13.8 ± 0.3 piglets, respectively; P = 0.029) was greater for positive DCAD diets compared to negative DCAD diets; and there was an interaction between DCAD, calcidiol, and parity (P = 0.002). Feeding a negative DCAD diet influenced stillbirth, subsequent litter size, and metabolic responses at farrowing. More studies are needed to define optimal diets prefarrowing for sows.