The objectives of this study were to elucidate the effects of degree of methyl esterification (DM) and charge distribution of pectin on the stability of emulsions and to analyze bioaccessibility of curcumin incorporated in emulsions stabilized by pectins. Three commercial pectins, CP72 (DM72), CP50 (DM50), and CP7 (DM7), were used. MP50 (DM50) with consecutive demethylesterified galacturonic acid residues was prepared from CP72 via demethylesterification to induce different charge distributions. Emulsions containing curcumin were prepared and were stored for 30 days. The CP72 and CP50 emulsions remained relatively stable for 30 days. However, MP50 and CP7 were less effective at forming stable emulsions. When the pectin emulsions passed through each phase of the simulated gastrointestinal tract (GIT), the CP72 and CP50 emulsions retained their initial droplet structures after in vitro mouth and gastric digestion, whereas the MP50 and CP7 emulsions exhibited gel-like clusters, although the gel-like formation of MP50 was distinct from that observed in CP7. MP50 emulsion showed a high degree of final lipid digestion and high bioaccessibility of curcumin while CP72 emulsion displayed a low degree of final lipid digestion. CP50 exhibited low bioaccessibility of curcumin, which might have been contributed by its fast lipid digestion profiles.