A multifunctional nanomaterial (ZnO-IL), comprising zinc oxide modified with corrosion-resistant ionic liquid groups, was designed and synthesized. It was used as an additive in bis(2-ethylhexyl) sebacate (DIOS) to evaluate its tribological and corrosion resistance properties, and compared with the commercial additive sulfurized isobutylene (SIB). ZnO-IL exhibited good solubility and thermal stability in DIOS. Lubricants containing ZnO-IL showed excellent anti-wear performance under various loads and temperatures. Its deposition on metal surfaces and the synergistic action of benzotriazole groups in the anions effectively prevented corrosion on the surfaces of metal friction pairs, thereby addressing the challenge of friction pair corrosion caused by the hydrolysis of ester-based oils. The ZnO-IL nanomaterial rapidly formed an organic-inorganic multilayer adsorption film on metal surfaces through electrostatic interactions. During friction, a boundary lubrication film composed of ZnO deposition and friction chemical reaction films was formed, thereby avoiding direct metal contact, reducing contact pressure, and exhibiting outstanding friction reduction and anti-wear properties.
Read full abstract