The antimicrobial resistance of Streptococcus pneumoniae, or pneumococcus, is a growing global problem. In our study, 3,571 invasive pneumococcal isolates, recovered from blood and cerebrospinal fluid samples from patients in Finland between the years 2002 and 2006, showed an increase in erythromycin nonsusceptibility from 16% to 28% (P < 0.0001) over the 5-year study period, as well as a doubling of penicillin nonsusceptibility from 8% to 16% (P < 0.0001). Erythromycin nonsusceptibility increased especially in isolates derived from 0- to 2-year-old children and was 46% for this age group in 2006. Although multiresistance, defined as nonsusceptibility to penicillin, erythromycin, and tetracycline, was fairly rare (5.1% in 2006), 38% of the erythromycin-nonsusceptible isolates were also penicillin nonsusceptible, while 74% of the penicillin-nonsusceptible isolates were nonsusceptible to erythromycin. In contrast to the situation in continental Europe, but mirroring that in North America, the most frequent macrolide resistance determinant carried by 56% of the tested macrolide-resistant pneumococci was the mef gene. Serotypes 14, 9V, 19A, 6B, and 19F were most frequently nonsusceptible to erythromycin or penicillin. The penicillin-resistant invasive isolates (n = 88) were genotyped by multilocus sequence typing, which revealed the presence of 25 sequence types, 9 of which were novel. The majority of the isolates were related to one of several globally disseminated penicillin- or multiresistant clones, most importantly the rlrA adhesion pilus carrying clones Spain(9V) ST156 and Taiwan(19F) ST236. The penicillin-resistant pneumococcal population in Finland is therefore a combination of internationally recognized genotypes as well as novel ones.
Read full abstract