Benzophenone-2 (2,2′, 4,4′- Tetrahydroxybenzophenone; BP-2) is widely used as a sunscreen in Personal and Care Products (PCPs) for protection against ultraviolet (UV) radiation. The effects of BP-2 on random-sex adult zebrafish (Danio rerio) cytochrome P450 (CYP450) were studied. The main goal was to investigate the detoxification mechanisms underlying the adverse consequences of exposure to xenobiotic chemicals such as BP-2. Total protein content, CYP450 content, and erythromycin N-demethylase (ERND) activity were evaluated as indicators of protein CYP3A expression. Five sets of pooled random-sex adult zebrafish were exposed to 0.0, 0.1, 5.0, and 10.0 mg/L of BP-2 to evaluate their acute and chronic toxicity (4 and 15 days, respectively). ERND activity was significantly increased in the chronic toxicity group compared to that in the control group, whereas CYP450 remained unchanged. The results suggest a sufficiently fast catalytic process that does not alter the total CYP450 content. It implies a mediation of CYP450 3A induction by BP-2 and the pregnane X receptor ligand-binding domain (PXR LBD) interaction. Ligand-protein interactions were confirmed via in silico docking with AutoDock Vina. Further computational studies indicate BP-2 potential binding affinity for the Estrogen receptor alpha ligand binding domain (ERα LBD). These results suggest that CYPs effects may result in significant toxicity in the zebrafish. Our study highlights the importance of studying biomarkers in aquatic organisms to assess xenobiotic exposure and the potential toxicity of UV filters to humans.
Read full abstract