Pyruvate kinase (PK) deficiency is a rare enzyme-linked glycolytic defect resulting in mild-to-severe chronic persistent erythrocyte hemolysis. The disease is an autosomal recessive trait caused by mutations in the PK liver and red blood cell gene characterized by insufficient erythrocyte PK activity. PK deficiency is most diagnosed in persons of northern European descent and managed with packed red blood cell transfusions, chelation, and splenectomy with cholecystectomy. Mitapivat is the first approved therapy indicated for hemolytic anemia in adults with PK deficiency with the potential for delaying splenectomy in mild-moderate disease. Mitapivat is a PK activator that acts by allosterically binding to the PK tetramer and increases PK activity. The red blood cell form of PK is mutated in PK deficiency, which leads to reduced adenosine triphosphate, shortened red blood cell lifespan, and chronic hemolysis. The half-life of elimination is 3-5 hours, with 73% bioavailability, 98% plasma protein binding, and a median duration of response of 7 months. Mitapivat has been investigated through various clinical trials for different therapeutic indications. Pivotal trials that serve the primary focus throughout this article are ACTIVATE, ACTIVATE-T, and RISE. ACTIVATE is a phase 3, randomized, double-blind, placebo-controlled study that evaluated the efficacy and safety of mitapivat in adult patients who were not receiving regular blood transfusions. Contrarily, ACTIVATE-T explored the safety and efficacy of mitapivat in adults with PK deficiency who received regular blood transfusions. Both trials demonstrated favorable use of mitapivat in PK deficiency. Focusing on another indication, the ongoing RISE trial investigates the optimal dosage of mitapivat in sickle cell disease. Mitapivat is an appropriate treatment for adults with PK deficiency requiring transfusions and may be considered for patients with symptomatic anemia who do not require transfusions and/or PK deficiency with compensated hemolysis without overt anemia.