Sand waves are large flow-transverse bedforms coupled to oscillatory boundary-layer currents of tidal origin. Like the much smaller ripple-marks generated by short-period wind waves, sand waves are observed to grow more asymmetrical with increase in the time—velocity asymmetry of the governing currents, that is, with increase in the steady component of flow (mass-transport strictly related to wave-motion) relative to the periodic component. Wind-wave ripple-marks owe their origin directly to a mass-transport component dependent on bed-curvature, which arises naturally wherever a sufficiently powerful oscillatory flow is imposed on a deformable grain boundary. This curvature-related current, flowing from troughts to crests on the bed, drifts grains mobilized by the periodic component into transverse bands. Sand waves may also owe their origin and growth to an unstable interaction within tide-generated oscillatory boundary layers between the mobile bed and a curvature-related mass-transport. Sand-wave internal structure apparently depends on the strength and degree of asymmetry of the governing currents. Relatively symmetrical forms associated with currents of low asymmetry are expected to contain comparatively small, intricately related herring-bone or climbing cross-bedding sets. Relatively asymmetrical currents shape sand waves with one side so steep that large-scale flow separation is inevitable. The predominant structure is then expected to be long avalanche bedding broken into sets by mud drapes and bioturbated zones representing periods of gentle flow, and/or by erosional discontinuities recording tidal reversals. The expected structures have parallels in the stratigraphic record and amongst modern sand waves.