We study two-state (dichotomous, telegraph) random ergodic continuous-time processes with dynamics depending on their past. We take into account the history of the process in an explicit form by introducing integral nonlocal memory term into conditional probability function. We start from an expression for the conditional transition probability function describing additive multistep binary random chain and show that the telegraph processes can be considered as continuous-time interpolations of discrete-time dichotomous random sequences. An equationinvolving the memory function and the two-point correlation function of the telegraph process is analytically obtained. This integral equationdefines the correlation properties of the processes with given memory functions. It also serves as a tool for solving the inverse problem, namely for generation of a telegraph process with a prescribed pair correlation function. We obtain analytically the correlation functions of the telegraph processes with two exactly solvable examples of memory functions and support these results by numerical simulations of the corresponding telegraph processes.
Read full abstract