Abstract
Using the randomization approach, introduced by A. Tempelman in Randomized multivariate central limit theorems for ergodic homogeneous random fields, Stochastic Processes and their Applications. 143 (2022), 89–105, we prove: (a) a randomized version of the invariance principle (the functional CLT); (b) a version the Glivenko–Cantelli theorem; (c) a randomized theorem about convergence of empirical processes to the Brownian bridge. We also weaken the moment condition in the randomized CLTs, proved in the mentioned article. The main point of our work is that most of our theorems are valid for all ergodic homogeneous random fields on Zm and Rm,m≥1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.