Simple SummaryBreast cancer is a heterogeneous disease, categorized into distinct subgroups with different clinical prognoses and treatment strategies. This study aimed to evaluate the role of ERBB3 in different molecular subtypes of breast cancers. Despite ERBB3/HER3 and its partner ERBB2/HER2 showing low expression levels in basal-like/triple-negative breast cancers, stratification of basal-like patients according to ERBB3 mRNA expression levels highlighted a correlation between higher ERBB3 levels and shorter relapse-free patients’ survival. In vitro analyses unveiled that the activation of the NRG1/ERBB3/ERBB2 axis robustly induces anchorage-independent growth of basal-like/triple-negative breast cancer cellular models, without significant effects on cell proliferation, differentiation, and migration in adhesion. Overall, our data suggest that ERBB2/ERBB3 plays an oncogenic role in basal-like/triple-negative breast cancer patients, suggesting its neutralization as a therapeutic strategy for these breast cancer subtypes, which today have very limited treatment opportunities.ERBB3, also known as HER3, is a tyrosine kinase transmembrane receptor of the ERBB family. Upon binding to neuregulin 1 (NRG1), ERBB3 preferentially dimerizes with HER2 (ERBB2), in turn inducing aggressive features in several cancer types. The analysis of a dataset of breast cancer patients unveiled that higher ERBB3 mRNA expression correlates with shorter relapse-free survival in basal-like breast cancers, despite low ERBB3 expression in this breast cancer subtype. Administration of neuregulin 1 beta (NRG1β) significantly affected neither cellular proliferation nor the basal migratory ability of basal-like/triple-negative quasi-normal MCF10A breast cells, cultured in mono-layer conditions. Furthermore, no significant regulation in cell morphology or in the expression of basal/myoepithelial and luminal markers was observed upon stimulation with NRG1β. In non-adherent conditions, NRG1β administration to MCF10A cells did not significantly influence cell survival; however, it robustly induced cell growth as spheroids (3D growth). Intriguingly, a remarkable upregulation of ERBB3 and ERBB2 protein abundance was observed in 3D compared to 2D cell cultures, and NRG1β-induced 3D cell growth was efficiently prevented by the anti-HER2 monoclonal antibody pertuzumab. Similar results were obtained by the analysis of basal-like/triple-negative breast cancer cellular models, MDA-MB-468 and MDA-MB-231 cells, in which NRG1β induced anchorage-independent cell growth that in turn was prevented or reduced by the simultaneous administration of anti-HER2 neutralizing antibodies. Finally, the ability of pertuzumab in suppressing NRG1β-induced 3D growth was also evaluated and confirmed in MCF10A engineered with HER2-overexpression. We suggest that the NRG1/ERBB3/ERBB2 pathway promotes the anchorage-independent growth of basal-like breast cancer cells. Importantly, we provide evidence that ERBB2 neutralization, in particular by pertuzumab, robustly inhibits this process. Our results pave the way towards the development of novel anticancer strategies for basal-like breast cancer patients based on the interception of the NRG1/ERBB3/ERBB2 signaling axis.
Read full abstract