An overwhelming endoplasmic reticulum stress (ERS) and the following unfolded protein response (UPR) can induce hepatic inflammation, fibrosis and hepatocellular carcinoma (HCC). Caudatin, one of the species of C-21 steroidal glycosides mainly isolated from the roots of Cynanchum bungei Decne, exhibits potent anticancer activities in vivo. However, the effect of caudatin on HCC remains unclear. In the present study, a diethylnitrosamine (DEN)-induced HCC model was established. Nodules and tumors in rat livers were monitored by T2-/T1-weighted-magnetic resonance imaging (MRI) using a 1.5 T scanner. Caudatin reduced the number and size of nodules and alleviated the inflammatory foci in the liver. In addition, the hepatic pro-inflammatory levels of interleukin (IL) 6, monocyte chemoattractant protein 1 and IL-1β were decreased in caudatin-treated rats. The DEN-induced surge in malondialdehyde, aspartate aminotransferase, alanine transaminase and TBIL were alleviated following caudatin treatment. The expression of ERS chaperones glucose-regulated protein, 94 kDa, glucose-regulated protein, 78 kDa and protein disulfide-isomerase A4 and the proliferation marker Ki-67 in liver nodules were all downregulated by caudatin as demonstrated by immunohistochemistry, reverse transcription-quantitative PCR and western blot analysis. Caudatin reduced the cytoprotective ERS sensor activating transcription factor 6-mediated signal transduction and inhibited the PKR-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway. However, the effect of caudatin on inositol requiring enzyme 1 signaling was negligible. In conclusion, restoration of the dysregulated UPR program was involved in the antitumor efficacy of caudatin without inducing cumulative hepatotoxicity.
Read full abstract