This study conducted a classification analysis of hydrometeor types during a typical stratiform mixed cloud precipitation event in the rainy season using data from the Liupan Mountains micro rain radar power spectra. The primary research findings are as follows: (1) Utilizing the RaProM method synthesizes the information of particle falling velocity, equivalent radar reflection coefficient, particle scale characteristics at different stages, and the location of the bright zone in the zero-degree layer to classify hydrometeors during this precipitation process, and the results show that drizzle and raindrop distribution time periods do not match with the raindrop spectra and rain intensities observed by the DSG5 ground-based precipitation gauge. (2) Sensitivity experiments conducted on the RaProM method revealed that after modifying the discrimination thresholds for drizzle and raindrops, the distributions of drizzle and raindrops were more aligned with ground-based raindrop spectrum observations. Furthermore, these adjustments also showed better consistency with the radar reflectivity factor, Doppler velocity, and velocity spectrum width thresholds used by existing millimeter-wave cloud radars to discriminate between drizzle and raindrops. (3) Various kinds of hydrometeors show different vertical distribution characteristics in three precipitation stages: weak, strong, and weak. In the two weak precipitation stages, hydrometeors mainly existed in the form of snowflakes at altitudes above the zero-degree layer and in the form of drizzle at altitudes below the zero-degree layer. The vertical distribution disparity of hydrometeors between the mountain peak and base sites demonstrates that terrain significantly influences hydrometeors during the precipitation process.
Read full abstract