A method for seismic design of plane steel moment resisting frames based on the use of equivalent modal damping ratios is developed. The method determines the design base shear of the structure through spectrum analysis using rationally obtained equivalent modal damping ratios instead of the crude strength reduction (behavior) factor. An equivalent linear structure, which retains the mass and initial stiffness of the original non-linear structure and takes into account geometrical non-linearity and inelasticity in the form of equivalent, time-invariant, modal damping ratios is established. The equivalent damping ratios for the first few significant modes are numerically computed by first iteratively forming a frequency response transfer function modulus until it satisfies certain smoothness criteria and then by solving a set of non-linear algebraic equations. Thus, design equations providing equivalent damping ratios as functions of period and allowable deformation and damage are constructed using extensive numerical data coming from plane steel moment resisting frames excited by various seismic motions. These equations can be used in conjunction with a design spectrum, appropriately constructed for high damping values, and modal synthesis tools to calculate the seismic design forces of the structure. The proposed method is illustrated by numerical examples. It is concluded that unlike the usual approach of seismic codes employing a single common value of the strength reduction factor value for all modes, the proposed approach working with deformation and damage dependent equivalent modal damping ratios leads to more accurate and deformation and damage controlled results.