Because the defects in the existing modeling methods for the equivalent mechanical model of a sloshing fluid have led to incorrect or inaccurate results in the existing equivalent models, this paper discusses three different modeling methods for the equivalent models: the traditional method, Housner’s method, and the modified method. The equivalent models obtained by the three methods are, respectively, presented and compared with each other for a liquid in rectangular and upright cylindrical tanks. The results show that the traditional method cannot provide the correct location expressions of the equivalent masses because the two types of different excitations are simultaneously used in one equivalent model. An equivalent model is exclusively applicable to a certain excitation (a translational excitation in a certain direction or a rotational excitation about a certain axis). Housner’s method is based on physical intuition, instead of fluid dynamics theory, therefore the calculation precision of Housner’s solution is not satisfactory. Housner’s method is only suitable for vertical tanks with a flat bottom subjected to a horizontal excitation. Based on a conceptual mistake in the traditional method, the concept of the equivalent model is reclarified, and the modified equivalence method is therefore suggested. A supplementary solution for the equivalent model in a cylindrical tank is presented. The correct models can be acquired using the modified equivalence method, which is applicable to tanks of arbitrary shape.
Read full abstract