Condition monitoring and fault diagnosis play an important role in the health management of mechanical equipment. However, the robust performance of data-driven-based methods with unknown fault inputs remains to be further improved. In this paper, a novel approach of condition monitoring and fault diagnosis is proposed for rolling element bearings based on an improved ensemble empirical mode decomposition (IEEMD), which is able to solve the non-intrinsic mode function problem of EEMD. In this method, IEEMD is applied to process the primordial vibration signals collected from rolling element bearings at first. Then the correlation analysis and data fusion technology are introduced to extract statistical features from these decomposition results of IEEMD. Finally, a complete self-zero space model is constructed for the condition monitoring and fault diagnosis of rolling element bearings. Experiments are implemented on a mechanical fault simulator to demonstrate the reliability and effectiveness of the proposed method. The experimental results show that the proposed method can not only diagnose known faults but also monitor unknown faults with strong robust performance.
Read full abstract