The development and improvement of rocket and space technology are largely determined by the application of manufacturing technologies that enable the production of high-reliability products with energy efficiency, while simultaneously reducing material intensity and shortening the production cycle. Among these progressive technologies, additive technologies should be mentioned. The essence of these technologies lies in obtaining parts through layer-by-layer melting of material based on a computer 3D model of the product in a chamber of a specialized 3D printer equipped with a laser device. The application of additive technologies in rocket engine construction requires extensive scientific research and experimental work to confirm compliance with industry standards, rules, and mandatory certification at the state level. In accordance with the program of priority research at SibSU, in collaboration with the industrial partner “Polychrome” LLC a complex of experimental work is being carried out to test and refine the 3D printing modes of a demonstrator model of a low thrust rocket engine (LTRE). The design of the LTRE, operating on environmentally friendly gaseous fuel components, has been developed and adapted for 3D printing on the ASTRA 420 printer. The parameters and characteristics of the printer are considered, and the sequence of experimental work on selecting printing modes for the engine chamber housing and mixing head is outlined. The fundamental possibility of adjusting the modes of laser material melting and forming of the part has been established. The main technological stages of post-printing processing of LTRE chamber parts are presented. A description of the equipment for heat treatment and electrochemical polishing of parts is provided. The sequence of material structure research is outlined, and the results of metallographic and X-ray analysis of the internal state of the metal are presented. The importance of stand tests of rocket engines in the development of innovative design solutions and the implementation of innovative production technologies is demonstrated. A description and composition of the testing stand system at SibSU are presented. The results of stand firing tests indicate the fundamental possibility of manufacturing LTRE using selective laser melting of heat-resistant alloy.