The paper presents a numerical analysis of equilibrium state and spin configuration of square lattice Ising model with competing interaction. The most detailed description is given for case of ferromagnetic interaction of the first-order neighbours and antiferromagnetic coupling of the second-order neighbours. The numerical method is based on Metropolis algorithm. It uses 128×128 lattice with periodic boundary conditions. At first, the simulation results show that the system is in saturation state at low temperatures, and it turns into paramagnetic state at the Curie point. The competing second-order interaction makes possible the domain structure realization. This state is metastable, because its energy is higher than saturation energy. The domains are small at low temperature, and their size increases when temperature is growing until the single domain occupies the whole simulation area. In addition, the antiferromagnetic coupling of the second-order neighbours reduces the Curie temperature of the system. If it is large enough, the lattice has no saturation state. It turns directly from the domain state into paramagnetic phase. There are no extra phases when the system is antiferromagnetic in main order, and only the Neel temperature shift realizes here.
Read full abstract