Abstract
We report on imaging of three-dimensional precessional orbits of the magnetization vector in a magnetic field by means of a time-resolved vectorial Kerr experiment that measures all three components of the magnetization vector with picosecond resolution. Images of the precessional mode taken with submicrometer spatial resolution reveal that the dynamical excitation in this time regime roughly mirrors the symmetry of the underlying equilibrium spin configuration and that its propagation has a non-wavelike character. These results should form the basis for realistic models of the magnetization dynamics in a largely unexplored but technologically increasingly relevant time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.