The buffering of phosphorus (P) in the landscape delays management outcomes for water quality. If stored in labile form (readily exchangeable and bioavailable), P may readily pollute waters. We studied labile P and its intensity for>600 soils and sediments across seven study locations in the United States. Stocks of labile P were large enough to sustain high P losses for decades, indicating the transport-limited regime typical of legacy P. Sediments were commonly more P-sorptive than nearby soils. Soils in the top 5cm had 1.3-3.0 times more labile P than soils at 5-15cm. Stratification in soil test P and total P was, however, less consistent. As P exchange via sorption processes follows the difference in intensities between soil/sediment surface and solution, we built a model for the equilibrium phosphate concentration at net zero sorption (EPC0) as a function of labile P (quantity) and buffer capacity. Despite widely varying properties across sites, the model generalized well for all soils and sediments: EPC0 increased sharply with more labile P and to greater degree when buffer capacity was low or sorption sites were likely more saturated. This quantity-intensity-capacity relationship is central to the P transport models we rely on today. Our data inform the improvement of such P models, which will be necessary to predict the impacts of legacy P. Further, this work reaffirms the position of labile P as a key focus for environmental P management-a view Dr. Sharpley developed in the 1980s with fewer data and resources.
Read full abstract